PHENOLIC GLUCOSIDES FROM OLEA EUROPAEA SUBSP. AFRICANA

HIROKI TSUKAMOTO, SUEO HISADA, SANSEI NISHIBE* and DAVID G. ROUX†

Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02, Japan; †Department of Chemistry, University of the Orange Free State, Bloemfontein, 9300 Republic of South Africa

(Revised received 8 June 1984)

Key Word Index—Olea europaea subsp. africana; Oleaceae; lignans; (+)-1-acetoxypinoresinol 4'- β -D-glucoside; (+)-1-acetoxypinoresinol 4"-methyl ether 4'- β -D-glucoside; (+)-1-hydroxypinoresinol 4'- β -D-glucoside; esculin; secoiridoid; oleuropein.

Abstract—Two new lignan glucosides, (+)-1-acetoxypinoresinol 4"-methyl ether 4'- β -D-glucoside and (+)-1-hydroxypinoresinol 4'- β -D-glucoside, together with three known glucosides, (+)-1-acetoxypinoresinol 4'- β -D-glucoside, esculin and oleuropein, were isolated from the bark of *Olea europaea* subsp. africana.

INTRODUCTION

The bark of Olea europaea L. subsp. africana (Mill) Green (Oleaceae), known as the 'wild olive', has been used as an anti-febrile and an anti-rheumatic agent, and as a tonic in southern Africa [1]. In previous work, we reported the isolation of esculetin and scopoletin from this source [2], while Roux and co-workers isolated (+)-africanal, (-)-olivil and (+)-cyclo-olivil from the heartwood [3]. We also isolated a lignan glucoside, (+)-1-acetoxypinoresinol $4'-\beta$ -D-glucoside, two coumarins, esculetin and esculin, and a secoiridoid glucoside, oleuropein, from the bark of the cultivated olive of commerce, O. europaea L. [4, 5].

The wild olive, previously classified as Olea africana Mill, was recently reclassified as a subspecies of O. europaea [6], and our interest was accordingly directed at the phenolic glucosides from O. europaea subsp. africana.

RESULTS

(+)-1-Acetoxypinoresinol 4'- β -p-glucoside (1) and (+)-1-acetoxypinoresinol 4"-methyl ether 4'- β -D-glucoside (2) were isolated from the chloroform extract, the former being identified by direct comparison with an authentic sample [4]. The IR spectrum of 2 indicated the presence of a carboxy group (1730 cm⁻¹) and aromatic rings (1605, 1590 and 1510 cm⁻¹). The ¹H NMR spectrum of 2 exhibited resonances attributable to an aliphatic acetoxy group (δ 1.67) and three aromatic methoxy groups (δ 3.87). These data indicate a marked structural resemblance between 2 and 1. In the 13 C NMR data of 2 (Table 1), $\Delta\delta + 1.6$ (C-1"), +1.2 (C-3"), +2.0 (C-4") and -3.6 (C-5") ppm shifts of aromatic carbons relative to those of the corresponding carbons of 1, correlate with a veratryl unit in the C-6 position of the glucoside 2 [7]. The structure of 2 was confirmed as (+)-1-acetoxypinoresinol 4"-methyl ether 4'- β -D-glucoside by its identity with the compound obtained from methylation of 1 with excess diazomethane.

Table 1. ¹³C NMR spectral data of com-

pounds 1–3*			
Carbon	1	2	3
C-1	97.0	96.9	91.1
C-5	58.2	58.2	60.8
C-4	69.7	69.7	70.2
C-8	73.8	73.8	74.7
C-2	86.2	86.1	86.8
C-6	84.6	84.3	85.4
C-1'	130.3	130.3	131.1
C-1"	131.2	132.8	132.3
C-2'	113.0	113.0	112.6
C-2"	110.7	110.1	110.8
C-3'	148.2	148.2	148.3
C-3"	147.5	148.7	147.5
C-4'	146.3	146.3	146.0
C-4"	146.3	148.3	146.0
C-5'	114.6	114.6	114.6
C-5"	115.3	111.7	115.1
C-6'	121.1	121.0	119.7
C-6"	119.0	118.5	118.8
CH ₃ CO	20.6	20.6	
MeCO	168.8	168.7	
MeO	55.6	55.4	55.6
	55.7	55.7	
Glc-1	99.9	99.8	100.4
Glc-2	73.2	73.2	73.2
Glc-3	76.9	76.9	76.8
Glc-4	69.7	69.7	69.7
Glc-5	76.9	76.9	76.8
Glc-6	60.7	60.6	60.8

^{*}The solvent used in these experiments was DMSO- d_6 .

(+)-1-Hydroxypinoresinol $4'-\beta$ -D-glucoside (3), esculir (4) and oleuropein (5) were isolated from the butano extract. Compounds 4 and 5 were identified by direc

^{*}To whom correspondence should be addressed.

1 $R^1 = Ac$; $R^2 = H$

2 $R^1 = Ac$; $R^2 = Me$

3 $R^1 = R^2 = H$

comparison with authentic samples [5]. Both absorption maxima in the UV spectrum of 3 and their bathochromic shifts with base were very similar to those of 1, while the ¹H NMR spectrum of 3 resembled that of 1 except for the disappearance of the signal assigned to an aliphatic acetoxy group. The ¹³C NMR data indicated the absence of acetoxy resonances, but the presence of a hydroxy group at the C-1 position of 3. The structure of 3 was determined as (+)-1-hydroxypinoresinol $4' - \beta - D$ glucoside by its identity with the compound obtained by deacetylation of 1 with ammonia in methanol. Compounds 2 and 3 are new lignan glucosides of natural origin.

Recently, we have also isolated the lignan glucosides 2 and 3 from the bark of O. europaea [8]. Thus, both subspecies africana and europaea of O. europaea are identical in their bark chemistry and have the same lignans, coumarins and secoiridoids in common [2]. It is of interest that the bark of Fraxinus japonica Blume (Oleaceae), used since ancient times as an anti-febrile and an anti-rheumatic agent in Japan [9], contains the known active principles esculetin and esculin [10]. Their common distribution also in those barks of Olea spp. which have been used in similar therapeutic applications is noteworthy.

EXPERIMENTAL

All mps are uncorr. ¹H NMR spectra were obtained at 90 MHz using TMS as internal standard. ¹³C NMR spectra were recorded at 15 MHz with Fourier transform using TMS as internal standard. Silica gel F₂₅₄ (Merck) was used for TLC. The spots were detected by spraying the plates with 10% H₂SO₄ soln and heating.

Plant material. O. europaea subsp. africana was collected in Bloemfontein in October 1982. A voucher specimen has been deposited at the Herbarium of Higashi Nippon Gakuen University.

Isolation. Dry powdered bark (1.0 kg) of O. europaea subsp. africana was extracted $3 \times$ with hot MeOH. The conc. extract plus H_2O was extracted successively with Et_2O , CHCl₃ and n-BuOH.

The CHCl₃ extract was chromatographed on a silica gel column using a CHCl₃-EtOH gradient. The fractions were monitored by TLC developing with CHCl₃-EtOH (4:1). The fractions showing a TLC spot at R_F 0.30 were concd to give 1 (546.6 mg). The fractions showing a TLC spot at R_F 0.43 were concd to give 2 (50.4 mg).

The n-BuOH extract was chromatographed on a silica gel column using a CHCl₃-EtOH gradient. The fractions were

monitored by TLC developing with CHCl₃-MeOH-H₂O (65:35:10, lower layer). The fractions showing a TLC spot at R_F 0.53 were concd to give 3 (34.6 mg). The fractions showing a TLC spot at R_F 0.45 were concd to give 4 (132.4 mg). Those showing a TLC spot at R_F 0.60 were concd to give 5 (7.7 g).

(+)-1-Acetoxypinoresinol 4'-β-D-glucoside (1). Colourless needles, mp 183.5–185°, [α] $_{\rm D}^{122}$ + 7.9° (c 1.0; EtOH). UV $\lambda_{\rm max}^{\rm EIOH}$ nm (log ε): 231 (4.31), 279.5 (3.83). UV $\lambda_{\rm max}^{\rm EIOH}$ + NaOH nm: 254, 280, 292. IR $\nu_{\rm max}^{\rm KBr}$ cm $^{-1}$: 3325 (OH), 1735 (CO), 1600, 1590, 1520 (aromatic C=C). ¹H NMR (CD₃OD): δ1.67 (3H, s, alcoholic OAc), 2.77–3.03 (1H, m, H-5), 3.87 (6H, s, 2 × MeO), 3.24–4.44 (4H, m, H-4, 8), 5.05 (1H, s, H-2), 6.67–7.30 (6H, m, Ar-H). (Found: C, 57.68; H, 5.93. C₂₈H₃₄O₁₃·1/2H₂O requires: C, 57.23; H, 6.00%).

(+)-1-Acetoxypinoresinol 4"-methyl ether 4'-β-D-glucoside (2). Amorphous powder, $[\alpha]_D^{20} + 9.1^\circ$ (c 1.6; EtOH). UV λ_{\max}^{EtOH} nm (log ε): 231 (4.22), 279 (3.72). IR ν_{\max}^{KBr} cm⁻¹: 3400 (OH), 1730 (CO), 1605, 1590, 1510 (aromatic C=C). ¹H NMR (CD₃OD): δ1.67 (3H, s, alcoholic OAc), 2.75–3.08 (1H, m, H-5), 3.87 (9H, s, 3 × MeOH), 3.22–4.44 (4H, m, H-4, 8), 5.05 (1H, s, H-2), 6.77–7.28 (6H, m, Ar-H). (Found: C, 57.53; H, 5.97. C₂₉H₃₆O₁₃·H₂O requires: C, 57.04; H, 6.27%)

Compound 1 in MeOH was methylated with excess CH_2N_2 to give (+)-1-acetoxypinoresinol 4"-methyl ether 4'- β -D-glucoside, which was identical to 2 in all respects.

(+)-1-Hydroxypinoresinol 4'-β-D-glucoside (3). Colourless plates, mp 127–129°, [α] $_{\rm D}^{23}$ – 9.3° (c 0.42; MeOH). UV $\lambda_{\rm max}^{\rm EIOH}$ nm (log s): 228 (4.11), 279.8 (3.66). UV $\lambda_{\rm max}^{\rm EIOH}$ +NaOH nm: 254, 280, 292. IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3400 (OH), 1600, 1515 (aromatic C=C). ¹H NMR (CD₃OH): δ 2.96–3.14 (1H, m, H-5), 3.80, 3.83 (6H, each s, 2 × MeO), 3.47–4.52 (4H, m, H-4, 8), 4.80 (1H, s, H-2), 6.60–6.80 (6H, m, Ar–H). FDMS m/z: 536 [M] $^+$ (C₂₆H₃₂O₁₂).

Compound 1 was deacetylated with NH₃ in MeOH to give (+)-1-hydroxypinoresinol 4'- β -p-glucoside, which was identical to 3 in all respects.

Esculin (4). Colourless crystalline powder, mp $152-154^{\circ}$. UV $\lambda_{\text{max}}^{\text{EiOH}}$ nm (log s): 224 (4.12), 250 (3.67), 298 (3.79), 336 (4.07). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3100–3550 (OH), 1700 (CO), 1680 (C=C), 1610, 1570 (aromatic C=C). 1 H NMR (CD₃OD + DMSO- 4 6): δ 6.27 (1H, 4 , 4 = 10 Hz, H-3), 6.87, 7.47 (2H, each s, Ar-H), 7.87 (1H, 4 , 4 = 10 Hz, H-4). 13 C NMR (DMSO- 4 6): δ 160.7 (C-2), 112.1 (C-3), 144.5 (C-4), 114.7 (C-5), 142.7 (C-6), 151.4 (C-7), 103.2 (C-8), 150.5 (C-9), 110.9 (C-10), 102.3 (C-1'), 73.4 (C-2'), 77.3 (C-3'), 69.9 (C-4'), 76.1 (C-5'), 60.8 (C-6'). (Found: C, 51.65; H, 4.80: C₁₅H₁₆O₉ · 1/2H₂O requires: C, 51.58, H, 4.91 %).

Oleuropein (5). Amorphous powder, $[\alpha]_D^{22} - 128.4^\circ$ (c 0.61; EtOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 228 (4.25), 280 (3.74). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3200-3550 (OH), 1700 (CO), 1620 (C=C), 1590, 1510 (aromatic C=C). ¹³C NMR (CD₃OD): δ95.0 (C-1), 154.9 (C-3), 109.1 (C-4), 31.5 (C-5), 41.0 (C-6), 172.9 (C-7), 124.6 (C-8), 130.3 (C-9), 13.2 (C-10), 168.5 (C-11), 100.7 (C-1'), 74.5 (C-2'), 78.1 (C-3'), 71.2 (C-4'), 77.7 (C-5'), 62.5 (C-6'), 130.5 (C-1"), 116.2 (C-2"), 146.0 (C-3"), 144.7 (C-4"), 116.8 (C-5"), 121.0 (C-6"), 68.6 (C-α), 35.1 (C-β), 53.0 (MeO). (Found: C, 52.21; H, 6.04. C₂₅H₃₂O₁₃· 2H₂O requires: C, 52.08; H, 6.29 °₀.)

Acknowledgement—We thank Miss S. Kitagawa, Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University for the ¹H and ¹³C NMR spectral data.

REFERENCES

- Watt, J. M. and Breyer-Bramdwijk, M. G. (1962) in The Medicinal and Poisonous Plants of Southern and Eastern Africa, p. 806. Livingstone, Edinburgh.
- 2. Tsukamoto, H., Hisada, S., Nishibe, S., Roux, D. G. and

- Rourke, J. P. (1984) Phytochemistry 23, 699.
- 3. Viviers, P. M., Ferreira, D. and Roux, D. G. (1979) Tetrahedron Letters 3773.
- 4. Chiba, M., Okabe, K., Hisada, S., Shima, K., Takemoto, T. and Nishibe, S. (1979) Chem. Pharm. Bull. 27, 2868.
- 5. Nishibe, S., Tsukamoto, H., Agata, I., Hisada, S., Shima, K. and Takemoto, T. (1981) Shoyakugaku Zasshi 35, 251.
- 6. Green, P. S. and Kupicha, F. K. (1979) Kew Bull. 34, 69.
- 7. Nishibe, S., Tsukamoto, H. and Hisada, S., Chem. Pharm. Bull. (submitted).
- 8. Tsukamoto, H., Hisada, S. and Nishibe, S., Chem. Pharm. Bull. (submitted).
- 9. Kariyone, T. and Kimura, Y. (1973) in Saishin Wakanyakuyoshokubutsu, p. 106. Hirokawa Shoten, Tokyo. 10. Yamagami, I., Suzuki, Y. and Itoh, K. (1968) Folia
- Pharmacol. Japon. 64, 714.